1. 研究目的与意义
内容:番荔枝(Annona squamosa)是番荔枝科(Annonaceae)植物番荔枝属植物,在我国南方广东,广西,云南和海南等地有大范围栽种,番荔枝的种子是人们食用番荔枝果实后的丢弃物。中药番荔枝子,记载于《广东植物志》,其味苦,性寒,归心、肺、肝、肾、脾经,具有消积杀虫、清热解毒、解郁、止血等功效,主治恶疮肿痛、驱虫。其含番荔枝内酯类化合物,因有较强的抗肿瘤效果,抗肿瘤效果为紫杉醇的40-300倍。
意义:本课题主要是对植物番荔枝的种子的有效部位进行化学成分研究,为后续进一步阐明其药理作用及机制奠定基础。
2. 文献综述
番荔枝传统药用及化学成分和活性研究进展
摘要:番荔枝Annona squamosa Linn. 为番荔枝属植物,民间常作杀虫药、驱虫剂。从番荔枝中化学成分有内酯类、萜类、生物碱、环肽等,其中内酯类化学成分占多数。番荔枝具有抗肿瘤、杀虫、抗菌等生物活性。本文主要对该植物的化合物及其活性进行了综述,并对其开发利用进行的展望。
关键词:番荔枝;番荔枝内酯;抗肿瘤;抗氧化
Advances in studies on chemical constituents and pharmacological activities of Annona squamosa L.
Abstract: Annona squamosaLinn. is a member of Annona,it has antitumor ,insecticidal activity.It is related to contain macrolide,alkaloids,terpenoids,cylic peptides,carbohydrates,fixed oils,tannins phenolic,the lactone components accounted for the majority. In view of the immense studies on A. Squamosa,this review strives to unite available information regarding its phytochemistryand biological activities.
Key words:Annona squamosa Linn;Annonaceousacetogenins;anticancer;antioxidant
1.介绍
在医学的萌芽时期,人类就用天然产物治疗疾病。19世纪起,植物中的化学成分成为发现新药的关键渠道。植物活性成分在农业及医药领域发挥的药效,激发了植物学家、化学家及药理学家的广泛兴趣及研究。植物在民间医学的悠久应用史中,表现出具有治疗多种疾病的潜力,而番荔枝也是如此。本文就番荔枝的药用、化学成分、药理活性进行综述。
2.药用
番荔枝A. squamosa系番荔枝科Annonaceae番荔枝属Annona植物,番荔枝及其同属植物如刺果番荔枝A. muricata、牛心果番荔枝A. reticulata,在传统用药中,均被广泛地用于治疗多种疾病,尤其用于抗肿瘤和抗寄生虫。果实作为天然的药物被用于治疗痢疾、疟疾、发烧和风湿性关节炎等多种疾病。叶被用于治疗膀胱炎、糖尿病、头痛及失眠。据《广东省中药材标准》记载[1],番荔枝种子有消积杀虫之功,临床主要用于恶疮肿痛、驱虫等。其亦用于治疗痢疾、癫痫、发烧、出血和溃疡;也有抗肿瘤、抗生育等作用[2,3,4]。
3.化学成分
番荔枝中含有番荔枝内酯(Annonaceous acetogenins,ACGs)、二萜、环肽、生物碱及少量黄酮、木脂素、等成分,具有多种生物活性,尤其是番荔枝内酯,其抗肿瘤活性尤为显著。ACGs的抗癌活性机理是通过抑制线粒体复合氧化酶I,抑制癌细胞ATP生成,致使癌细胞凋亡[5].。其末端γ不饱和内酯环被认为能直接作用于线粒体复合氧化酶I,而四氢呋喃环能如锚般,嵌入脂质双层[6]。
Table 1. Chemical compounds isolated from Annona squamosa.ACG: Annonaceous acetogenins; ALK: alkaloid; DIT: diterpene; CP: cyclic peptide
表1. 植物番荔枝中的化学成分
Plant part | Compounds | Class | Biological Activity | References |
Fruits | ent-kaur-16-en-19-ol | DIT | [7] | |
Fruits | ent-kaur-16-en-19-oic acid | DIT | toxicityagainstlung95-D andovarianA2780cancer cells | [7,8,9] |
Fruits | ent-kaurane-16β,17,19-triol | DIT | [7] | |
Fruits | 4α-hydroxy-19-nor-ent- kauran-17-oic-acid | DIT | [7] | |
Fruits,Barks, Stems | 16α,17-dihydroxy-ent-kauran-19-oic acid | DIT | [7,8, 10,11] | |
Fruits,Stems, Pericarp | 16β,17-dihydroxy-ent- kauran-19-al | DIT | [7,10,11] | |
Fruits,Stems | 16β,17-dihydroxy-ent-kauran-19-oic acid | DIT | anti-inflammatory activities | [7,11,12] |
Fruits,Stems | 17-hydroxy-16α-ent-kauran-19-oic acid | DIT | [7,11] | |
Fruits,Stems | 17-hydroxy-16β-ent-kauran-19-oic acid | DIT | [7,11] | |
Fruits,Stems | 17-hydroxy-16β-ent- kauran-19-al | DIT | inhibitory effects on platelet aggregation | [7,11] |
Fruits | 17-acetoxy-16β-ent- kauran-19-oic acid | DIT | [7] | |
Fruits | 19-formyl-ent-kauran- 17-oic acid | DIT | [7] | |
Fruits,Barks | annosquamosin A | DIT | [7,8] | |
Fruits,Barks, Stems | annosquamosin B | DIT | toxicityagainstlung95-D andovarianA2780cancer cells | [7,8,9,11] |
Barks | (4α)-19-nor-ent-kaurane -4,16,17-triol | DIT | [9] | |
Barks | (4α,16α)-17-(acetyloxy)-19-nor-ent-kaurane-4,16-diol | DIT | [9] | |
Barks | 17-hydroxy-ent-kaur- 15-en-19-al | DIT | toxicityagainstlung95-D andovarianA2780cancer cells | [9] |
Barks | 17-hydroxy-ent-kaur-15-en-19-al | DIT | [9] | |
Barks | ent-15β-hydroxy-kaur-16-en-19-oic acid | DIT | [8] | |
Barks | 15,16-epoxy-17-hydroxy-ent-kau-ran-19-oic acid | DIT | toxicityagainstlung95-D andovarianA2780cancer cells | [8] |
Barks | 16α,17-dihydroxy-ent-kauran-19-oic acid methyl ester | DIT | toxicityagainstlung95-D andovarianA2780cancer cells | [8,9] |
Barks | 16-α-Hydroxykauranoic acid | DIT | [8] | |
Barks,Stems | annosquamosin C | DIT | toxicityagainstlung95-Dcancer cells | [8,9,11] |
Stems,Pericarp | annosquamosin D | DIT | [10,11] | |
Stems | annosquamosin E | DIT | [11] | |
Stems | annosquamosin F | DIT | [11] | |
Stems | annosquamosin G | DIT | [11] | |
Stems | 4α-hydroxy-19-nor-entkauran-17-oic-acid | DIT | [11] | |
Stems | 16α-hydro-ent-kauran-17,19-dioic acid | DIT | [11] | |
Stems | 16β-hydro-ent-kauran-17,19-dioic acid | DIT | [11] | |
Stems,Pericarp | 16β-hydroxy-17-acetoxy- ent-kauran-19-oic acid | DIT | [10,11] | |
Stems | 16α-hydro-19-al-ent- kauran-17-oic acid | DIT | [11] | |
Stems | 16α,17-dihydroxy-ent- kauran-19-al | DIT | toxicityagainstlung95-D andovarianA2780cancer cells | [9,11] |
Stems | annomosin A | DIT | [11] | |
Stems | ( )-anomuricine | ALK | [13] | |
Stems | N-methyl-6,7-dimetho xyisoquinolone | ALK | immune stimulating activity | [13,18] |
Stems | N-methylcorydaldine | ALK | [13] | |
Stems | 5-((6,7-dimethoxy-2-methyl -1,2,3,4-tetrahydroisoquinolin-1-yl)methyl)-2-methoxybenzene-1,3-diol | ALK | [14] | |
Stems | 6,7-dimethoxy-2-methylisoquinol | ALK | [15] | |
Stems | (1R,3S )-6,7-dimethoxy-2- methyl-1,2,3,4-tetrahydroisoquinoline-1,3-diol | ALK | [14] | |
Stems,Leaves | anonaine | ALK | [16] | |
Stems,Leaves | roemerine | ALK | [16] | |
Stems,Leaves | norlaureline | ALK | [16] | |
Stems,Leaves | aporphine | ALK | [16] | |
Stems,Leaves | norcorydine | ALK | [16] | |
Stems,Leaves | corydine | ALK | [16] | |
Stems,Leaves | norisocorydine | ALK | [16] | |
Stems,Leaves | isocorydine | ALK | [16] | |
Stems,Leaves | glaucine | ALK | [16] | |
Stems,Leaves | ( )-O-methylarmepavine | ALK | immune stimulating activity | [16,17,18] |
Stems,Leaves | lanuginosine | ALK | immune stimulating activity | [13,17,18] |
Stems,Leaves | dienone | ALK | [16] | |
Leaves | (-)-xylopine | ALK | [17] | |
BarKs | 4-Deoxyannoreticuin | ACG | [19] | |
BarKs | annoreticuin-9-one | ACG | [19] | |
BarKs | bullacin B | ACG | [20] | |
BarKs | cis-4-deoxyannoreticuin | ACG | [21] | |
BarKs | molvizarin | ACG | [21] | |
BarKs | mosin B | ACG | [21] | |
BarKs | mosin C | ACG | [21] | |
BarKs | parviflorin | ACG | [21] | |
BarKs | squamotacin | ACG | toxicityagainst breast cancer( MDR MCF-7/Adr) cells | [21,22] |
Seeds | annoglaxin | ACG | [23] | |
Seeds | annonareticin | ACG | [23] | |
Seeds | annosquacin A | ACG | [26] | |
Seeds | annosquacin B | ACG | toxicityagainstlungA549/Taxol cancer cells | [26,27] |
Seeds | annosquacin C | ACG | [26] | |
Seeds | annosquacin D | ACG | toxicityagainstlungA549/Taxol cancer cells | [26,27] |
Seeds | annosquacin-I | ACG | toxicityagainstlungA549, breast MCF-7,liver HepG2cancer cells | [29] |
Seeds | annosquamin A | ACG | toxicityagainstlungA549/Taxol cancer cells | [27,30] |
Seeds | annosquamin B | ACG | toxicityagainsthepatoma H22and lung A549/Taxol cancer cells | [27,30,31] |
Seeds | annosquamin C | ACG | [30] | |
Seeds | annosquatin A | ACG | [26] | |
Seeds | annosquatin B | ACG | toxicityagainsthepatoma H22, breast MCF-7, lung A549cancercells | [28,31] |
Seeds | annosquatin-I | ACG | toxicityagainstlungA549, breast MCF-7,liver HepG2cancer cells | [29] |
Seeds | annosquatin-II | ACG | toxicityagainstlungA549, breast MCF-7,liver HepG2cancer cells | [29] |
Seeds | annotemoyin-1 | ACG | antibacterial activities; toxicity against lungA549/Taxol cells | [24,27,30,32] |
Seeds | annotemoyin-2 | ACG | antibacterial activities | [24,32] |
Seeds | bullatacin/Squamocin G | ACG | toxicityagainsthepatoma H22,breastMDR MCF-7/Adr and leukemiaL1210 cancercells | [23,31,33] |
Seeds | bullatencin | ACG | [24] | |
Seeds | cherimolin-1 | ACG | [35] | |
Seeds | cherimolin-2 | ACG | [35] | |
Seeds | corepoxylone | ACG | [24] | |
Seeds | desacetyluvaricin | ACG | [25] | |
Seeds | diepomuricanin A | ACG | [24] | |
Seeds | diepomuricanin B | ACG | [24] | |
Seeds | dieporeticenin | ACG | [24] | |
Seeds | dieposabadelin | ACG | [24] | |
Seeds | dotistenin | ACG | [24] | |
Seeds | epoxyrolin B | ACG | [23] | |
Seeds | glabrencin B | ACG | [24] | |
Seeds | lepirenin | ACG | [24] | |
Seeds | motrilin | ACG | toxicityagainst breast cancer( MDR MCF-7/Adr) cells | [22,25] |
Seeds | murisolin | ACG | [23] | |
Seeds | neo-desacetyluvaricin | ACG | [23] | |
Seeds | neo-expoxyrolin | ACG | [23] | |
Seeds | reticulatain-1 | ACG | [24] | |
Seeds | reticulatain-2 | ACG | [24] | |
Seeds | solamin | ACG | [30] | |
Seeds | squamocenin | ACG | [24] | |
Seeds | squamocin | ACG | antibacterial activities | [23,25,26, 32,33,35] |
Seeds | squamocin B | ACG | [33] | |
Seeds | squamocin C | ACG | toxicity againstleukemiaL1210 cells | [33] |
Seeds | squamocin D | ACG | [33] | |
Seeds | squamocin E | ACG | [33] | |
Seeds | squamocin F | ACG | [33] | |
Seeds | squamocin H | ACG | toxicity againstleukemiaL1210 cells | [33] |
Seeds | squamocin I | ACG | toxicity againstleukemiaL1210 cells | [33] |
Seeds | squamocin J | ACG | toxicity againstleukemiaL1210 cells | [33] |
Seeds | squamocin K | ACG | [33] | |
Seeds | squamocin L | ACG | toxicity againstleukemiaL1210 cells | [33] |
Seeds | squamocin M | ACG | [25,33] | |
Seeds | squamocin N | ACG | [33] | |
Seeds | squamocin-I | ACG | toxicity against human tumor cells | [36] |
Seeds | squamocin-II | ACG | toxicity against human tumor cells | [36] |
Seeds | squamocin-III | ACG | toxicity against human tumor cells | [36] |
Seeds | squamocin-O1 | ACG | [34] | |
Seeds | squamocin-O2 | ACG | [34] | |
Seeds | squamostanin A | ACG | toxicity against colon HCT, lung A549 and prostate PC-3cancercells | [37] |
Seeds | squamostanin B | ACG | toxicity against colon HCT, lung A549 and prostate PC-3cancercells | [33,37] |
Seeds | squamostatin A | ACG | [25,26] | |
Seeds | squamostatin B | ACG | [33] | |
Seeds | squamostatin C | ACG | [23,33] | |
Seeds | squamostatin D | ACG | toxicity againstleukemia L1210 cancercells | [25,26,33] |
Seeds | squamostatin E | ACG | toxicity againstleukemia L1210 cancercells | [26,33] |
Seeds | squamosten A | ACG | [33] | |
Seeds | squamostolide | ACG | [38] | |
Seeds | squamoxinone-D | ACG | toxicity against human tumor cells | [36] |
Seeds | tripoxyrollin | ACG | [24] | |
Seeds | uvariamicin I | ACG | [24] | |
Seeds | uvariamicin II | ACG | [24,30] | |
Seeds | uvariamicin III | ACG | [24,30] | |
Seeds | uvarigrandin A | ACG | [23,25,26] | |
Seeds | 12,15-cis- squamostatin A | ACG | toxicity against lungA549/Taxol cells | [25,27] |
Seeds | annosquamosin A | CP | [39,40] | |
Seeds | cherimolacyclopeptide B | CP | [41] | |
Seeds | cyclosquamosin A | CP | [39,41] | |
Seeds | cyclosquamosin B | CP | [39] | |
Seeds | cyclosquamosin C | CP | [39] | |
Seeds | cyclosquamosin D | CP | anti-inflammatoryactivities | [39,41] |
Seeds | cyclosquamosin E | CP | [39,41] | |
Seeds | cyclosquamosin F | CP | [39] | |
Seeds | cyclosquamosin G | CP | [39] | |
Seeds | cyclosquamosin H | CP | [41] | |
Seeds | cyclosquamosin I | CP | [41] | |
Seeds | squamin A | CP | [41] | |
Seeds | squamin B | CP | [41] |
3.1 番荔枝内酯
ACGs是有长碳链的不饱和脂肪酸内酯类成分。该类化合物多具有0~3个四氢呋喃(TFH)环、一个甲基取代或重排的末端γ-丁内酯,由两条长碳链连接上述部分,且碳链通常含有立体化学多变的含氧基团(如环氧环、乙酰氧基、羟基、酮基等)及双键,碳原子数目多为35或37个[42]。1982年Jolad等[43]从番荔枝科玉盘属植物Uvaria acuminata根中分离得到了第一个番荔枝内酯(Annonaceous acetogenins,ACGs) uvaricin,药理实验表明该化合物具有强大抗癌、杀虫、杀寄生虫、抗菌等药理活性。自此激发了海内外植物学家,化学家及药理学家等对ACGs的广泛关注及研究。目前已报到从该植物中分离鉴定的番荔枝内酯有80多个,其结构类型主要属于单四氢呋喃型ACGs、邻位四氢呋喃型ACGs、间位四氢呋喃型ACGs。根据其结构中四氢呋喃环个数及其位置把ACGs分为单四氢呋喃型ACGs、邻双四氢呋喃型ACGs、间双四氢呋喃型ACGs及非四氢呋喃型ACGs。
3.2 挥发油
近年来,Garg等[44]对番荔枝叶进行了GC-MS分析,研究发现荔枝叶只要成分为倍半萜,其中β-Caryophyllene(23.0%),germacrene D(21.3%),bicyclogermacrene (8.5%)和β-elemene (7.8%)。据报道[45],番荔枝树皮中挥发性主成分为1H-Cycloprop(e)azulene (3.46%), germacrene D (11.44%), bisabolene (4.48%), caryophyllene oxide (29.38%), bisabolene epoxide (3.64%) and kaur-16-ene (19.13%). Zoghbi等[46]通过GC-MS分析了番荔枝果中的挥发性成分,发现其主成分为-pinene (25.3%), sabinene (22.7%)和limonene (10.1%)。
4. 生物活性
4.1 抗溃疡作用
Dinesh K. Yadav等[47]研究了番荔枝细枝的乙醇提取物对大鼠CRU溃疡模型及ASP、AL胃溃疡模型的疗效。结果发现,其氯仿部位抗溃疡活性最好,20mg/kg剂量的氯仿部位对CRU模型的有效率为81.20%,其对PL、ASP、HA模型的有效率分别为67.0%、44.43%和86.3%,同时,10mg/kg奥美拉唑的有效率分别为77.40%, 37.70%, 69.42%和70.60%,而己烷部位对ASP溃疡模型表现出高选择性,20mg/kg剂量的已烷部位的有效率为63.87%。
Figure 1. Cont.
图 1.化合物结构
Figure 1. Cont.
图 1.化合物结构
Figure 1. Cont.
图 1.化合物结构
Figure 1. Cont.
图 1.化合物结构
Figure 1. Cont.
图 1.化合物结构
Figure 1. Cont.
图 1.化合物结构
Figure 1. Cont.
图 1.化合物结构
Figure 1. Cont.
图 1.化合物结构
Figure 1. Cont.
图 1.化合物结构
Figure 1. Cont.
图 1.化合物结构
Figure 1. Cont.
图 1.化合物结构
Figure 1. Cont.
图 1.化合物结构
Figure 1. Cont.
图 1.化合物结构
Figure 1. Cont.
图 1.化合物结构
Figure 1. Chemical structures of the major compounds isolated from A. squamosa
图 1.番荔枝植物中化合物结构
4.2 抗肿瘤活性
近年来,通过多种肿瘤细胞细胞株的毒性试验表明,番荔枝各部位的提取物及从番荔枝中分得的ACGs有较强的抗肿瘤作用,且抗肿瘤谱广。De-Shen等[48]用番荔枝叶提取物及其各部位对多种肿瘤细胞株进行毒性试验(MTT),发现提取物和乙酸乙酯部位有较好的抗肿瘤活性,乙酸乙酯部位对皮肤癌细胞株 KB-3-1及结肠癌细胞株HCT-116的IC50分别为13.67μg/mL、1.37μg/mL,而对其余5种肿瘤细胞株抑制效果较差,可见番荔枝叶的乙酸乙酯部位对肿瘤细胞的抑制具有差异性。Chen 等[49]研究了番荔枝子乙酸乙酯部位对4种肿瘤细胞的体外和H22肝癌细胞移植小鼠的体内抑制作用,研究发现番荔枝子乙酸乙酯部位对 MCF-7 乳腺癌细胞和 HepG2 肝癌细胞抑制活性极强,其IC50分别为2.510-1mgL -1和3.610-1mgL -1,剂量为18mg/kg/day对H22肝癌小鼠的抑肿率达到69.55%。番荔枝子脂肪油[50]对5种肿瘤细胞表现出不同程度的增殖抑制作用,其中对 HepG2 细胞有较高的抑制活性,其IC50为5.710-1mgL -1,对人肝癌 HepG2 细胞有选择性抑制其增殖作用。
4.3 免疫调节作用
Soni, V. K等[51],研究了番荔枝细枝乙醇提取物对BALB/c小鼠的免疫调节作用,发现其能增强腹腔巨噬细胞吞噬功能,促进T、B淋巴细胞增殖,差异性增加CD 4、CD 8T淋巴细胞和CD 19B细胞。进一步研究[18],发现N-methyl-6,7-dimethoxyisoquinolone是其主要药效物质。
4.4 抗真菌作用
Kalidindi等[52]研究了番荔枝叶提取物各部位对链格孢菌、白色念珠菌、茄病镰刀菌、犬小孢子菌及黑曲霉菌的抑菌效果。发现当氯仿部位的质量浓度在300μg/mL时,即可抑制链格孢菌、茄病镰刀菌的生长;甲醇部位在400μg/mL时,能抑制犬小孢子菌及黑曲霉菌的生长;对于白色念珠菌,各部位对其抑制效果相近,最小抑制浓度为600μg/mL。
4.5 抗细菌作用
Nithiya等[53]分别用乙醇、丙酮和水3种不同极性的溶剂对番荔枝果进行提取,并分别测试了这三种溶剂提取物对葡萄球菌、绿脓杆菌、克氏肺炎杆菌、大肠杆菌、伤寒杆菌、化脓链球菌和黑曲霉菌的抑制作用,发现三种提取物均有抗细菌活性,且与革兰氏阳性菌相比,对革兰氏阴性菌抑菌活性更强。
4.6 抗氧化活性
细胞内活性氧(ROS)的无节制产生介导氧化应激反应,随后引起细胞生理生化病变,导致细胞能量代谢不足和死亡[54]。天然产物中的抗氧化剂能消除ROS造成的氧化损伤,目前筛选天然抗氧化剂的研究十分活跃[55,56]。Alkhawalidy等[57]用DPPH法评价了番荔枝叶提取物及其部位的抗氧化活性,并测了总酚类含量,发现其已烷部位抗氧化活性最好,正丁醇部位总酚类含量最高。Basker等[58].用多种体外模型,对番荔枝属植物番荔枝、刺果番荔枝、牛心番荔枝叶乙醇提取物的抗氧化活性进行了比较,发现刺果番荔枝叶提取物活性最强,而番荔枝叶提取物的清除羟自由基活性最强。Nandhakumar等[59],对番荔枝果水提物和甲醇提取物对超氧阴离子(O2-)、羟自由基(OH-)、DPPH和脂质过氧化(LPO)等多种体外模型的抑制作用和总抗氧化活性和还原能力进行了研究,结果发现甲醇部位抗氧化活性较强,这与其含有酚醛类和黄酮类成分相关。
5.结语
番荔枝含有多种活性成分,生物活性广泛,在药物、植物农药的开发领域,具有广阔的发展前景。从目前研究现况来看,还存在一下问题:(1)对番荔枝的研究还不够系统和充分,特别对活性成分的研究有待深入;(2)对其主要化学成分的药理活性研究还不够全面,有关药理活性的作用部位不甚明确、有效成分及其作用机制未能探明;(3)开发利用研究甚少。以上是番荔枝今后研究的主要方向,通过对其化学和生物活性的进一步研究,挖掘其药用价值,更好发挥其作用。
References:
[1]. 广东省食品药品监督管理局, 广东省中药材标准. 2011: 广东科技出版社.
[2]. Chandrashekar, C. and V.R. Kulkarni, Isolation,Characterizations and Free radical scavenging activity of Annona squamosa leaf. Journal of Pharmacy Research, 2011(3): p. 610-611.
[3]. Watt G,Periodic E., Dictionary of the Econpmic product of India Vol I [M]. New Delhi:cosmo Publications, 1972:260
[4]. Asolkaer L V, Kakkar K K, Chakre O J. Glossary of Indian medicinal plants with active principle [M]. New Delhi:publication and Information Directorate, 1992:72
[5]. Michael, L., et al., Molecular mode of action of annonins. Pesticide Science, 1991. 33: p. 427-438.
[6]. Shimada, H., et al., Membrane conformations and their relation to cytotoxicity of asimicin and its analogues. Biochemistry, 1998. 37(2): p. 854-66.
[7]. Wu, Y.C., et al., Identification of ent-16 beta, 17-dihydroxykauran-19-oic acid as an anti-HIV principle and isolation of the new diterpenoids annosquamosins A and B from Annona squamosa. Journal of Natural Products, 1996. 59(6): p. 635-637.
[8]. 孙丽蕊等, 番荔枝皮化学成分及其抗肿瘤活性的研究. 中国中药杂志, 2012. 37(14): 第2100-2104页.
[9]. Zhou, C., et al., Cytotoxic Diterpenoids from the Stem Bark of Annona squamosa L. Helvetica Chimica Acta, 2013. 96(4): p. 656662.
[10]. 陈亚运等, 番荔枝果皮小极性成分研究. 中药材, 2015. 38(7): 第1430-1432页.
[11]. Yu-Liang Yang, F.C.C.W., New ent-Kaurane Diterpenoids with Anti-Platelet Aggregation Activity from Annona squamosa. J. Nat. Prod., 2002. 65: p. 1462-1467.
[12]. Yeh, S., et al., An Anti-Inflammatory ent-Kaurane from the Stems of Annona squamosa that Inhibits Various Human Neutrophil Functions. Planta Medica, 2005. 71(10): p. 904-909.
[13]. Yadav, D.K., et al., Anti-ulcer constituents of Annona squamosa twigs. Fitoterapia, 2011. 82(4): p. 666-675.
[14]. Jayendra, Y. Kumar and S.S. Kumar, Two new tetrahydroisoquinoline analogs from Indian medicinal plant Annona squamosa. Journal of Pharmacy Research, 2013. 7(6): p. 510515.
[15]. Jayendra and Y. Kumar, New compound 6,7-dimethoxy-2-methylisoquinolinium from Indian medicinal plant Annona squamosa L. International Journal of Chemical Analytical Science, 2013. 4(3): p. 161168.
[16]. Bhakuni, D.S., S. Tewari and M.M. Dhar, Aporphine alkaloids of annona squamosa. Phytochemistry, 1972. 11(5): p. 1819-1822.
[17]. Bhaumik, P.K., et al., Alkaloids from leaves of Annona squamosa. Phytochemistry, 1979. 18(9): p. 15841586.
[18]. Soni, V.K., et al., N-methyl-6, 7-dimethoxyisoquinolone in Annona squamosa twigs is the major immune modifier to elicit polarized Th1 immune response in BALB/c mice. Fitoterapia, 2012. 83(1): p. 110-116.
[19]. Hopp, D.C., et al., Mono-THF ring annonaceous acetogenins from Annona squamosa. Phytochemistry, 1998. 47(5): p. 803-809.
[20]. Hopp, D.C., et al., Three new bioactive bis-adjacent THF-ring acetogenins from the bark of Annona squamosa. Bioorganic Medicinal Chemistry, 1998. 6(5): p. 569575.
[21]. Hopp, D.C. and D.C. Hopp, New bioactive annonaceous acetogenins from the bark of Annona squamosa, and the use of countercurrent chromatography for their isolation. Dissertation Abstracts International, Volume: 59-01, Section: B, page: 0238.;Major Professor: Jerry, 1997.
[22]. Nicholas H. Oberlies, C.C.A.J., Structure-Activity Relationships of Diverse Annonaceous Acetogenins against Multidrug Resistant Human Mammary Adenocarcinoma (MCF-7/Adr) Cells. J. Med. Chem, 1997. 40: p. 2102-2106.
[23]. Li, X., et al., Annonaceous acetogenins from the seeds of Annona squamosa. Chemistry of Natural Compounds, 2010. 46(1): p. 101-105.
[24]. Bajin Ba Ndob, I., et al., Annonaceous acetogenins: Precursors from the seeds of Annona squamosa. Phytochemistry Letters, 2009. 2(2): p. 72-76.
[25]. 徐莎莎等, 番荔枝种子的化学成分研究. 中草药, 2012. 43(2): 第195-197页.
[26]. 陈勇, 番荔枝内酯类化合物的分离、构效关系及毒性研究, 2013, 南京中医药大学.
[27]. Yuan, F., et al., Structureactivity relationships of diverse ACGs against multidrug resistant human lung cancer cell line A549/Taxol. Bioorganic Medicinal Chemistry Letters, 2015. 25(4): p. 787-790.
[28]. Yong, C., et al., Six cytotoxic annonaceous acetogenins from Annona squamosa seeds. Food Chemistry, 2012. 135(3): p. 960966.
[29]. Yong, C., C. Jian-Wei and L. Xiang, Cytotoxic Bistetrahydrofuran Annonaceous Acetogenins from the Seeds of Annona squamosa. J.nat.prod, 2011. 74(11): p. 2477-81.
[30]. Chen, Y., J.W. Chen and X. Li, Monotetrahydrofuran annonaceous acetogenins from the seeds of Annona squamosa. Phytochemistry Letters, 2012. 5(1): p. 3336.
[31]. Chen, Y., et al., Antitumor activity and toxicity relationship of annonaceous acetogenins. Food and Chemical Toxicology, 2013. 58: p. 394-400.
[32]. Mukhlesur Rahman, M., et al., Antimicrobial and cytotoxic constituents from the seeds of Annona squamosa. Fitoterapia, 2005. 76(5): p. 484-489.
[33]. Araya, H., Studies on Annonaceous Tetrahydrofuranic Acetogenins from Annona squamosa L. Seeds. 2004(23): p. 77-149.
[34]. Araya, H., et al., Squamocin-O(1) and squamocin-O(2), new adjacent bis-tetrahydrofuran acetogenins from the seeds of Annona squamosa. Phytochemistry, 2002. 61(8): p. 999-1004.
[35]. 余竞光, 番荔枝种子化学成分研究. 药学学报, 2005. 2(40): 第153 - 158页.
[36]. Miao, Y., et al., Four cytotoxic annonaceous acetogenins from the seeds of Annona squamosa. Natural Product Research, 2015: p. 1-7.
[37]. Yang, H.J., et al., Two new cytotoxic acetogenins from Annona squamosa. J Asian Nat Prod Res, 2009. 11(3): p. 250-6.
[38]. HaiHuiXIE, et al., A New Cytotoxic Acetogenin from the Seeds ofAnnona squamosa. Chinese Chemical Letters, 2003. 14(06): p. 588-590.
[39]. Morita, H., Y. Sato and J. Kobayashi, Cyclosquamosins A G, cyclic peptides from the seeds of Annona squamosa. Tetrahedron, 1999. 55(24): p. 7509-7518.
[40]. Li, C.M., et al., Cyclopeptide from the seeds of Annona squamosa. Phytochemistry, 1997. 45(3): p. 521-523.
[41]. Yang, Y., et al., New Cyclic Peptides from the Seeds of Annona squamosa L. and Their Anti-inflammatory Activities. Journal of Agricultural and Food Chemistry, 2008. 56(2): p. 386-392.
[42]. 陈瑛与于德泉, 抗癌有效成分番荔枝内酯化合物末端内酯环和四氢呋喃环的化学分类及NMR鉴别特征. 药学学报, 1998(07): 第74-81页.
[43]. Tempesta, M.S., G.R. Kriek and R.B. Bates, Uvaricin, a new antitumor agent from Uvaria accuminata (Annonaceae). J.org.chem, 1982. 47(16): p. 3151-3153.
[44]. Garg, S.N. and D. Gupta, Composition of the Leaf Oil of Annona squamosa L. from the North Indian Plains. Journal of Essential Oil Research, 2005. 17(3): p. 257-258.
[45]. Chavan, M.J., D.B. Shinde and S.A. Nirmal, Major volatile constituents of Annona squamosa L. bark. Natural Product Research, 2006. 20(8): p. 754-757.
[46]. Zoghbi, M. and J. Maia, Chemical Characterization of the Fruit of Annona squamosa L. Occurring in the Amazon. Journal of Food Composition Analysis, 2001. 14(2): p. 227232.
[47]. Yadav, D.K., et al., Anti-ulcer constituents of Annona squamosa twigs. Fitoterapia, 2011. 82(4): p. 666-675.
[48]. De-Shen, W., et al., Annona squamosa Linn: cytotoxic activity found in leaf extract against human tumor cell lines. Pakistan Journal of Pharmaceutical Sciences, 2014. 27(5Specno): p. 1559-1563.
[49]. Yong Chen, S.X.J.C., Anti-tumor activity of Annona squamosa seeds extract containing annonaceous acetogenin compounds. Journal of Ethnopharmacology, 2012. 142(2): p. 462-466.
[50]. 邱燕等, 番荔枝子脂肪油化学成分及其抗肿瘤活性. 中国实验方剂学杂志, 2014(21): 第109-111页.
[51]. Soni, V.K., et al., Immunomodulatory constituents from Annona squamosa twigs provoke differential immune response in BALB/c mice. Current Science, 2013.
[52]. Kalidindi, N., et al., Antifungal and antioxidant activities of organic and aqueous extracts of Annona squamosa Linn. leaves. Journal of Food and Drug Analysis, 2015. 23(4): p. 795-802.
[53]. Nithiya, T., Antimicrobial activity of fruit extract of annona squamosa L. World Journal of Pharmacy and Pharmaceutical Sciences, 2015. 4(05): p. 1257-1267.
[54]. Chance, B., H. Sies and A. Boveris, Hydroperoxide metabolism in mammalian organs. Physiological Reviews, 1979. 59(3): p. 527-605.
[55]. Chen, W., Y. Weng and C. Tseng, Antioxidative and antimutagenic activities of healthy herbal drinks from Chinese medicinal herbs. American Journal of Chinese Medicine, 2012. 31(4): p. 523-532.
[56]. Liao, J., et al., Chemical compositions, Anti-inflammatory, Antiproliferative and Radical-scavenging Activities of the methanol extracts of Actinidia callosa var. ephippioides. Am. J. Chin. Med., 2012. 40: p. 10471062.
[57]. Alkhawalidy, A.S.R. and M.A. Hossain, Study on total phenolics and antioxidant activity of leaves crude extracts of Annona squamosa traditionally used for the treatment of cancerous tumours. Asian Pacific Journal of Tropical Disease, 2015. 5: p. S142-S144.
[58]. Baskar, R., V. Rajeswari and T.S. Kumar, In vitro antioxidant studies in leaves of Annona species. Indian J Exp Biol, 2007. 45(5): p. 480-5.
[59]. Nandhakumar, E. and P. Indumathi, Invitro Antioxidant Activities of Methanol and Aqueous Extract of Annona squamosa (L.) Fruit Pulp. Journal of Acupuncture Meridian Studies, 2013. 6(3): p. 142148.
3. 设计方案和技术路线
研究方案: 1、提取:以SPF法提取番荔枝子,得到番荔枝总内酯,分别用石油醚、乙酸乙酯、甲醇依次洗脱,得到不同部位,用keed显色反应比较其内酯含量,取总内酯含量较高的Fr. 12部位进行分离。 2、将Fr. 12部位的浸膏称重,硅胶拌样,进行硅胶柱层析,后用ODS开放柱并结合半制备液相分离纯化得到单体化合物。 3、确定结构类型:采用现代手段(如UV、IR、1HNMR、13CNMR及MS)对所分离得到的单体成分进行结构鉴定,并参考各类化合物的光谱规律特征对分得的化合物进行结构解析,明确化合物的结构。 技术路线: |
4. 工作计划
2016年1月-2016年3月 查阅文献,完成文献综述及开题报告
2016年3月-2016年4月 番荔枝子Fr.12初步分离
2016年4月-2016年5月 对初分的不同流分进行细分,使用中压快速制备和半制备液相进行分离并纯化,得到单体化合物,采用现代的光谱手段对结构进行解析。
5. 难点与创新点
番荔枝(Annona squamosa)是番荔枝科(Annonaceae)植物番荔枝属植物,在我国南方广东,广西,云南和海南等地有大范围栽种,番荔枝的种子是人们食用番荔枝果实后的丢弃物。为了充分利用自然资源,并寻找新的抗肿瘤活性成分,本文对番荔枝科中番荔枝属(Annona)番荔枝(Annona squamossa)种子的有效部位总内酯部位进行了系统分离
以上是毕业论文开题报告,课题毕业论文、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。